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Abstract—We present a method for the fast computation of the intersection between a ray and the geometry of a scene. The scene

geometry is simplified with a 2D array of voxelizations computed from different directions, sampling the space of all possible directions.

The 2D array of voxelizations is compressed using a vector quantization approach. The ray-scene intersection is approximated using

the voxelization whose rows are most closely aligned with the ray. The voxelization row that contains the ray is looked up, the row is

truncated to the extent of the ray using bit operations, and a truncated row with non-zero bits indicates that the ray intersects the scene.

We support dynamic scenes with rigidly moving objects by building a separate 2D array of voxelizations for each type of object, and by

using the same 2D array of voxelizations for all instances of an object type. We support complex dynamic scenes and scenes with

deforming geometry by computing and rotating a single voxelization on the fly. We demonstrate the benefits of our method in the

context of interactive rendering of scenes with thousands of moving lights, where we compare our method to ray tracing, to

conventional shadow mapping, and to imperfect shadow maps.

Index Terms—Real time rendering, many lights, visibility determination, photorealism

Ç

1 INTRODUCTION

MANY scenes of interest to computer graphics applica-
tions contain a large number of dynamic light sour-

ces. Whereas the interactive computer graphics pipeline
and its hardware implementation can now handle scenes
with complex geometry modeled with millions of triangles,
the number of lights supported in interactive rendering has
not increased at a similar pace. Lighting is computationally
expensive because it implies solving a visibility problem for
every point light source. Providing support for a large num-
ber of light sources is an important way of improving the
quality of imagery rendered at interactive rates.

In this paper we propose a method for interactive render-
ing with thousands of dynamic lights. Our method is based
on an acceleration scheme that enables the fast computation
of the intersection between a light ray and the scene geome-
try. The scene geometry is voxelized from all possible direc-
tions, which results in a 2D array of voxelizations. Given a
ray, the scene intersection is approximated using the voxeli-
zation whose rows are most closely parallel to the ray. The
row traversed by the ray is looked up and the intersection is
computed with bit-shift operations. To save memory, the

2D array of voxelizations is compressed using a vector
quantization approach that detects and leverages the simi-
larity between voxelization rows.

The fast ray-scene intersection enables rendering with
thousands of dynamic lights at interactive rates (Fig. 1). Our
method brings a substantial speedup over ray tracing at the
cost of a small quality trade-off. A 2D array of voxelizations
contains 90 � 90 voxelizations (for a two degree direction
discretization), and each voxelization has a 128 � 128 � 128
resolution. This requires 333 MB of storage after vector
quantization compression, a substantial but practical
amount of memory.

Our approximation is independent of the light sources,
which can change from frame to frame at no additional cost.
We support dynamic scenes in one of two ways. For scenes
with rigid dynamic objects, an array of voxelizations pre-
computed for a moving object can be reused by transforming
the light ray to the local coordinate system of each instance
of the moving object. The example shown in Fig. 2 left uses
two arrays of voxelizations, one for the city and one for the
airplane, and three lookups per ray, one for the city, and one
for each of the two instances of the airplane. For scenes with
deforming geometry (e.g., the running bear shown in Fig. 2
middle), or for complex dynamic scenes (e.g., the amuse-
ment park shown in Fig. 2 right), the array of voxelizations is
approximated for every frame by computing one voxeliza-
tion and rotating it with two degrees of freedom, which is
substantially less expensive than computing every rotated
voxelization from the original scene geometry.

2 PRIOR WORK

The need to estimate visibility to a large number of light
sources arises both in the case of the direct illumination of
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scenes with complex lighting, and in the case of global illu-
mination where scene geometry samples turn into second-
ary light sources. The classical methods for computing
visibility to a light source are shadow mapping and ray

tracing. However, these methods are too slow for scenes
with a large of number of lights. Acceleration was pursued
along two main directions: scene geometry approximation,
to reduce the cost of estimating visibility to a light source,

Fig. 1. Scenes with 1,024 point light sources rendered with our method (top), and with ray tracing (bottom). The resolution of voxelization are
128� 128� 128 for Trees, Garden, and 256� 256� 256 for Cathedral. Our average pixel shadow value errors are 1.8, 2.7, and 3.0 percent, respec-
tively. Our frame rates are 26, 23, and 13 fps, which corresponds to speedups of 43�, 15�, and 16� versus ray tracing (i.e., NVIDIA’s Optix with BVH
acceleration).

Fig. 2. Dynamic geometry scenes with 1,024, 1,024, and 7,088 lights, rendered with our method (top), and with ray tracing (bottom). Our average
pixel shadow value errors are 1.7, 2.1, and 7.5 percent. Our frame rates are 15, 3, and 2 fps, which corresponds to speedups of 12�, 6�, and 35�
versus ray tracing.
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and light clustering, to reduce the number of lights. In addi-
tion to the overview of prior work given below, we also
refer the reader to a recent survey of techniques for render-
ing with a large number of lights [1].

2.1 Shadow Map Methods

Shadow mapping is the approach of choice when rendering
with a small number of lights. A shadow map is a view-
dependent approximation of scene geometry that can be
easily computed on the GPU. However, rendering a shadow
map for each one of a large number of lights is too slow.

Coherent ShadowMaps [2] are compressed, orthographic
depth maps precomputed for n viewing directions, with n
much smaller than the number of lights. For each ray, visibil-
ity is approximated using the shadow map with the view
direction closest to the direction of the ray. Since the method
relies on single layer shadowmaps, themethod has to distin-
guish between “infinitely” far away light sources, medium
distance (“semi-local”) light sources, and nearby (“local”)
light sources, in order to handle visibility queries within the
scene. A local light source is handled with its own cube map.
The method was extended to Coherent Surface Shadow
Maps (CSSMs) [3] to support light sources on scene geometry
as needed for indirect lighting. A virtual area light [4] is a
group of virtual point light sources, and the visibility to a vir-
tual area light is computed usingCSSMs extendedwith para-
bolic projection, which avoids having to compute visibility to
each individual virtual point light source.

Imperfect ShadowMaps (ISM) [5] is a technique that ren-
ders one shadowmap for each point light source. To achieve
interactive performance the resolution of the shadow maps
is low, and the shadow maps are rendered from a coarse
point-based approximation of scene geometry by splatting
followed by pull-push reconstruction. ISM is a frequently
used method for interactive rendering with many lights, so
we compare our method to in detail in the Results Section.
Hierarchical scene geometry approximations have been
used to accelerate shadow map computation. For example,
Implicit Visibility [6] uses a disk-based quadtree surface
approximation, and ManyLoDs [7] uses a cut through a
bounding volume hierarchy of the scene geometry. Virtual
shadow maps [8] partition shadow casting scene geometry
into clusters for which cube maps of appropriate resolution
are rendered, achieving interactive performance for complex
scenes with hundreds of lights.

Matrix Row-Column Sampling (MRCS) [9] uses the
matrix of all possible output sample/light point pairs to
determine output sample and light clusters for which to
compute a set of representative shadow maps. The visibility
of individual sample/light pairs is interpolated from a few
relevant representative shadow maps. A light clustering
method reduces the number of representative shadow
maps [10]. The MRCS algorithm is mapped to an out-of-core
GPU implementation [11], and its efficiency is improved by
reducing the number of visibility estimates between repre-
sentative light clusters and output image samples [12].

The use of a large number of shadow maps to approxi-
mate visibility to a large set of lights has the limitation
of redundancy between shadow maps constructed from
nearby viewpoints or with similar orthographic view direc-
tions. The higher the complexity of the scene and the higher

the number of lights, the higher the redundancy. Our
method uses a 3D approximation of the scene (i.e., a voxeli-
zation) which captures multiple layers of occlusion without
redundancy. Our method introduces redundancy by com-
puting a 2D array of voxelizations, which is needed to
achieve the fast ray-scene intersection. However, for our
method, redundancy is bounded by the discretization of all
possible ray directions, and it does not increase with the
number of lights or with the complexity of occlusions in the
scene. Our method does not cluster lights, but rather com-
putes visibility to each one of the scene light sources, which
provides good shadow quality.

2.2 Ray Tracing Methods

Several techniques accelerate ray tracing visibility computa-
tion using scene geometry approximation. Micro-
rendering [13] approximates geometry with a point hierar-
chy which accelerates ray traversal and geometry updates
for dynamic scenes. Ray tracing was also accelerated using
by geometry voxelization [14]. Voxel octree approaches
(e.g., [15]) accelerate ray tracing by building a resolution
hierarchy of sparse voxel octrees, and by using the coarser
level of the hierarchy as the ray cone diverges. Our method
also relies on geometry voxelization, and we reduce the cost
of ray-scene intersection to a couple of texure lookups using
a 2D array of voxelizations.

Many ray tracing methods focus on simplifying the set of
lights. An octree light hierarchy was used to cluster lights
based on their positions and their spheres of influence [16].
Lights were grouped in an unstructured light cloud and the
light vectors at each vertex are compressed using PCA,
which achieves high quality and high frame rates for low-
frequency lighting environments [17]. Lightcut [18] is a
popular method for shading with many lights based on clus-
tering scene lights in a binary tree. A cut through the tree is
selected for each output sample, under the assumption that
all lights are visible. The method is extended to include
visibility computation, i.e., to account for shadows, in Pre-
computedVisibility Cuts [19] and inNonlinear Cut Approxi-
mation [20], which are suitable for static scenes, and then in
Bidirectional Lightcuts [21], which can also handle dynamic
scenes. Instead of clustering lights, a different approach clus-
ters individual rays based on direction, with a cluster con-
taining rays from multiple lights, and solving visibility for
each cluster with its own shadow map ([22], [23]), with the
advantage of a smaller number of clusters, and the disadvan-
tage of having to define and partition the entire set of rays
before shadows can actually be computed.

Another approach for reducing the number of light sour-
ces that have to be considered for each output image pixel is
to tile the scene into regions affected only by a subset of the
scene lights [24]. The artifacts that can result from these
sharply defined light regions of influence can be reduced by
randomizing the cut-off distance [25]. This approach is sim-
ply a method for reducing the number of light rays to be con-
sidered, and they are complementary to methods for actually
computing shadows, such as ours. In all our examples, we
work in the challenging case of lights with infinite range,
such that any light source can affect any output image pixel.

Some ray tracing based methods approximate both the
lights and the scene geometry. VisibilityClusters [26] group
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geometry and lights using a sparse matrix whose non-zero
submatrices correspond to visibility interactions between
geometry clusters and light clusters. Such methods trade off
approximation construction complexity for approximation
efficiency, which pays of for scenes with non-uniform light
and geometry complexity.

Our method is essentially a ray tracing acceleration
method. Unlike the light clustering ray tracing acceleration
schemes discussed above, our method does not reduce the
number of rays by reducing the number of lights. This
brings a quality advantage since we estimate visibility for
each light individually. Moreover, this also ensures good
temporal coherence in the case of dynamic lights, where
each light can move independently without abrupt lighting
changes caused by sudden light cluster changes. Compared
to approaches that rely on a hierarchical subdivision of
geometry, our method has the advantage of a small and
bounded ray-scene intersection cost.

2.3 Fast Voxelization Methods

Our method relies on voxelizing scene geometry efficiently.
Geometry voxelization is an infrastructure problem that has
received considerable attention.

The insight behind fast voxelization with the help of
graphics hardware is that in conventional rendering triangle
fragments are assigned to voxels as the frame is rendered,
but this information is discarded by z-buffering, since con-
ventional graphics applications typically only care about
the first surface encountered at each pixel. Fast voxelization
methods modify the conventional graphics pipeline to store,
and not discard, the fragment to voxel assignment. One
approach achieves real-time voxelization by rendering the
scene geometry over a virtual framebuffer that concatenates
the 2D slabs of the 3D voxelization [27]. Another method
uses deep pixels, with a pixel corresponding to an entire
row of the voxelization, with one bit per voxel [28]. The
method was subsequently extended to handle solid models
by producing a voxelization with “1” or “occupied” bits
inside the object [29].

Several fast voxelization techniques depart from the con-
ventional graphics pipeline and define novel voxelization
pipelines using general GPU programming APIs, such as
CUDA. For example, VoxelPipe [30] computes the 3D voxe-
lization directly with a fast, sort-middle, approach, or a con-
servative, sort-last approach. A recent pipeline achieves a
significant performance improvement by optimizing the
triangle-voxel intersection test [31].

Several techniques have been developed to compute and
compress light visibility information over the entire scene.
Compact precomputed voxelized shadows [32] is a tech-
nique that partitions the scene with an octree and stores
binary shadow information at each voxel leaf. The octree is
compressed in a graph by leveraging the common subtrees.
Construction and compression are too laborious for online
computation, as required by dynamic lights or dynamic
geometry. Furthermore the binary voxel light visibility
information supports only one light. Another approach for
compressing shadow map data is to find planes in the
shadow map and to organize them into sparse shadow
trees [33], which is an approach that works well for large
scenes with a small number of lights.

This paper does not contribute a novel voxelization tech-
nique. We use the deep pixels approach [28] because it is
fast and because it can be easily integrated in the shader
framework used by our application to render shadows. Our
acceleration data structure contains thousands of voxeliza-
tions, but only the first one is computed directly from the
scene geometry, whereas the subsequent voxelizations are
computed efficiently by rotating this initial voxelization.
Rotating a voxelization remains orders of magnitude faster
than the fastest method for computing a voxelization from
scratch, i.e., from scene geometry.

2.4 Low-Level Visibility Query Acceleration
Schemes

Ourmethod accelerates visibility queries by computing a data
structurewhere the visibility queries can be answered trivially.
This general approach is similar in spirit to the epipolar space
voxel grid used in voxelized shadow volumes [34] to compute
light source visibility simultaneously for all points along an
output image ray, as needed in the case of rendering in partici-
pating media (e.g., “God rays”). Specular reflection rendering
was also accelerated by approximating an object close to a
reflector with a depth image, and by looking up the intersec-
tion between a reflected ray and a depth image in a simplified
rotated depthmap thatwhere the ray projects along a row [35].

Another attempt to accelerate ray-scene intersections
precomputes depth maps from viewpoints on an object’s
bounding sphere, and combines the 2D array of depth maps
into a volume texture [36]. The method provides the dis-
tance to the object surface with a lookup, but the ray has to
originate outside the object, so the method is not suitable for
inside-looking-out scenes.

VoxLink is proposed to accelerate ray-casting for volumet-
ric data rendering [37]. The method extends per-pixel linked
lists to occupied voxel lists, and subdivides the bounding vol-
ume of the scene into multiple bricks to support empty-space
skipping. VoxLink can be used to render the scenes with
transparent objects and shadows interactively. OSPRay
implements a fast ray tracing framework for rendering vol-
umes [38]. While both VoxLink and OSPRay cannot render
scenes with thousands light sources in real time because the
intersection computations are still not fast enough.

Our method does not store distance but rather a discreti-
zation of scene geometry with voxel occupancy bits, which
does not provide a direct read of the distance to the intersec-
tion, but which does allow the ray segment to originate any-
where. The idea of sampling visibility by discretizing scene
geometry is also used in global visibility methods. In adap-
tive global visibility sampling [39], the visibility information
captured by a visibility sample is propagated to all the
empty cells in between scene geometry.

3 FAST RAY-SCENE INTERSECTION

The ray-scene intersection is accelerated by approximating
the scene geometry with a 2D array of voxelizations.
Section 3.1 describes the construction of the 2D array of
voxelizations, Section 3.2 describes the vector quantization
compression of the 2D array of voxelizations, and
Section 3.3 describes using the 2D array of voxelizations to
approximate the intersection of a ray with scene geometry.
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3.1 Construction of 2D Array of Voxelizations

The voxelizations are computed as shown in Algorithm 1.
The scene S is voxelized for a dense discretization of the 2D
space of all directions. The nested for loops (lines 1-2) iterate
over all pairs of angles ðu;fÞwith a k degree increment. Given
a pair ðu;fÞ, the voxelization Vij, and the 90 degree rotated
voxelization Vij0 , are computed using a prior art approach for
single-pass voxelization [28] (line 4). Single-pass voxelization
renders the scene with an orthographic view that matches
the voxelization and sets the occupancy bit for the voxel that
contains each fragment.We compute two voxelizations at the
time, leveraging the fact that the voxelization for ðu;fþ 90Þ is
aligned with the voxelization for ðu;fÞ, and it can simply be
computed by transposing the indices of the voxel where the
occupancy bit is written. Both original and transposed voxeli-
zations have to be stored sincewe store rows, and since a row
cannot be recreated from columns quickly. For each ðu;fÞ
pair, voxelization is performed three times (not shown in
Algorithm 1 for simplicity), once for each of the x, y, and z
directions. This makes sampling more robust to surface ori-
entation. For example, voxelization only along the z direction
wouldmiss surfaces that are parallel to z.

Algorithm 1. Computation of 2D Array of Voxelizations

Input: Scene S modeled with triangles
Output: 2D array V of scene voxelizations
1: for u from 0 to 180 with k degree increment do
2: for f from 0 to 90 with k degree increment do
3: i ¼ u=k; j ¼ f=k; j0 ¼ ðfþ 90Þ=k;
4: ðVij; Vij0 Þ = SPVoxelization(u; f)
5: end for
6: end for
7: return V

3.2 Compression of the 2D Array of Voxelizations

A 2D array of voxelizations requires significant storage. A
typical angular resolution value (i.e., k in Algorithm 1) is
2 degrees, which results in a 90� 90 2D array of voxeliza-
tions. A typical voxelization resolution is 128� 128� 128.
Consequently, a typical storage requirement for a 2D array
of voxelizations is just below 2 GB. However, many of the
voxelization rows are quite similar andwe have developed a
vector quantization compression method that leverages row
similarity to reduce the storage requirement. The vectors are
the rows of all the voxelizations. For the typical parameter
values given above, there are 90� 90� 128� 128, or about
126M rows. The compression method proceeds in two steps,
as shown in Algorithm 2.

In a first step, a dictionary of n most popular rows is
computed (lines 1-2). A histogram H of the rows is com-
puted by sorting the rows and counting the number of
occurrences for each row. Then the unique rows are sorted
based on the number of occurrences and the n most
frequently encountered rows are selected to define the dic-
tionary D. In a second step, the rows in the initial, uncom-
pressed 2D array of voxelizations V are mapped to rows in
D (lines 3-15). The algorithm uses a sequence of s compres-
sion steps, from less to more aggressive.

The rows of the dictionary (lines 4-5) and the yet to be
mapped rows (line 8) are simplified to force a match. At

step c, a row is simplified by down-sampling the row with a
factor of 2c. The downsampling of 2c bits to a single bit sets
the output bit to 1 iff any of the input bits has a value of 1,
which preserves the blocker sample, albeit at a less accurate
location. The simplified row r0 is searched in the simplified
dictionary D0 and mapped to a matching row j, if such a
row is found (line 9). We typically use four compression
steps (i.e., s ¼ 4). The first step (c ¼ 0) does not down-
sample to map the voxelization rows that were used to
build the dictionary. In the last step (c ¼ 3), the rows are
down-sampled by a factor of 8. The rows that remain
unmapped after the last compression step are mapped to a
random dictionary row (lines 13-14), which achieves the
same shadow error as down-sampling with higher factors,
but at a lesser computational cost.

Algorithm 2. Compression of 2D Array of Voxelizations

Input: uncompressed 2D array of scene voxelizations V ,
number of rows in dictionary n, number of compression
steps s

Output: dictionaryD and mapping V 0 of V toD
1: H = Histogram of all rows in V
2: D = nmost frequent rows inH
3: for compression step c = 0 to s� 1 do
4: for each row i inD do
5: D0½i� = Simplify(D½i�, 2c)
6: end for
7: for each unmapped row i do
8: r0 = Simplify(V ½i�, 2c)
9: if (j = Find(r0,D0)) then V 0½i� = j
10: end if
11: end for
12: end for
13: for each remaining unmapped row i do
14: V 0½i� = Random(0, n-1)
15: end for
16: return (D, V 0Þ

The compressed 2D array of voxelizations is defined by
the dictionaryD and the mapping V 0. If the original number
of rows is N , and if a row has b bits, the compression factor
is (Nb) / (nb + Nlog2n) � b / log2n. For larger dictionaries
the compression is less lossy, but that comes at the cost of a
smaller compression factor. As described in the results sec-
tion, we use 1M row dictionaries which corresponds to a
compression factor of about 128/20. This reduces the stor-
age requirement from 2 GB to 333 MB, and the compression
losses translate to minimal shadow errors.

3.3 Intersection of a Ray with a 2D Array of
Voxelizations

The intersection between the ray r and the compressed 2D
array of voxelizationsV 0 is computed as shown inAlgorithm3.
r is intersected with the voxelization whose row direction
most closely approximates the direction of r. The ðu;fÞ angles
that define the direction of r are computed with the same k
angle increment that was used when computing the 2D array
of voxelizations (line 1). In Fig. 3, the ray direction is most
closely approximated by u = 30 and f = 42, therefore the ray-
scene intersection is approximated using the voxelization
V ½30=2�½42=2�.
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The intersection is computed in the row of V 0
ij that con-

tains themidpoint of the ray segment (line 3), where V 0
ij is the

voxelization with rowsmost aligned to ray r (lines 1-2). Since
the 2D array of voxelizations V 0 is compressed, the row of V 0

does not contain actual geometry information, but rather the
index in the dictionary D from where to retrieve the actual
row.The midpoint is used to find the best row in case the ray
traverses more than one row. Due to rotation angle discreti-
zation, rays are not perfectly aligned with the voxelization
row, and it can happen that the ray traverses several rows. A
more conservative solution would partition the ray based on
the rows it traverses and would handle each subray in its
own row. Our experiments reveal that the quality improve-
ment brought by this approach does not warrant the addi-
tional cost (i.e., a 4 percent quality improvement for a
45 percent performance penalty).

Algorithm 3. IntersectððV 0; DÞ; k; rÞ
Input: compressed 2D array of scene voxelizations (V 0,D),

direction discretization increment k, ray r
Output: boolean that approximates whether r intersects the

scene or not
1: ðu;fÞ = DiscretizeDirectionðr:direction; k; kÞ
2: i ¼ u=k; j ¼ f=k;
3: row ¼ D½V 0

ij.LookupRowðr:midpointÞ�
4: ðs; eÞ ¼ V 0

ij.ComputeExtentðr:endpointsÞ
5: clippedRow ¼ row � s
6: clippedRow ¼ clippedRow � ðsþ rowLength� eÞ
7: return (clippedRow 6¼ 0)

The row variable contains one bit for every row voxel.
The voxel bit is 1 if the voxel contains geometry and 0 other-
wise. The ray endpoints are projected onto the row to define
the subset of row voxels ðs; eÞ that is traversed by the ray
(line 4). The row voxel data is then clipped to the extent of
the ray with left and right bit shift operations (lines 5-6).
The ray intersects the scene iff the clipped row data contains
a non-zero bit (line 7). In Fig. 4 the voxelization row has
32 bits. The bits of the row containing the ray (blue segment)
are 0000 0010 0000 0000 1000 0001 0000 0000, corresponding
to two geometry spans of 1 and 8 voxels for the ear and the
body of the bunny. The ray extends from s = 4 to e = 27, so
the clipped row data is 0010 0000 0000 1000 0001 0000,
which is not zero, and therefore the ray intersects the scene
(i.e., at the ear and body of the bunny).

4 INTERACTIVE RENDERING WITH THOUSANDS OF

DYNAMIC LIGHTS

The fast scene-ray intersection enables rendering scenes
with thousands of dynamic lights at interactive rates,
according to Algorithm 4.

The algorithm first renders the output image I without
any lighting (line 1). Then each pixel p is lit by estimating
the visibility of each light Li from the surface point P
acquired at p (line 2-10). The 3D point P is computed by
unprojection (line 3). The number of lights hidden from P is
initialized to 0 (lines 4) and then incremented for every light
Li for which the ray ðP;LiÞ intersects the scene (lines 5-8).

Algorithm 4. Lighting Using 2D Array of Scene
Voxelizations

Input: scene S, set of n light points L, output image camera C,
compressed 2D array of scene voxelizations (V 0,D),
discretization increment k.

Output: S rendered from C lighted with L.
1: I = Render S from C without lighting
2: for every pixel p in I do
3: P ¼ Unprojectðp; CÞ
4: shadow ¼ 0
5: for every light Li in L do
6: ray ¼ ðP; LiÞ
7: shadow += IntersectððV 0; DÞ; k; rayÞ
8: end for
9: p:outputColor = Shadeðshadow; nÞ
10: end for

5 2D VOXELIZATION FOR DYNAMIC SCENES

For scenes where geometry is static, a precomputed 2D
array of voxelizations supports a large number of dynamic
lights. However, when geometry changes, recomputing
each voxelization of the 2D array using Algorithm 1 is too
slow for interactive rendering. We support dynamic scenes
in one of two ways.

5.1 Scenes with Dynamic Rigid Objects

Consider a scenewith several types of objects, with each type
replicated to several instances, and with each instance mov-
ing rigidly through the scene. We support such dynamic
scenes as shown in Algorithm 5.

The ray is first intersected with 2D array of voxelizations of
the static part of the scene (lines 1-3). If no intersection is found,
for each instance of a dynamic object, the ray is transformed to
the local coordinate system of the instance, and the trans-
formed ray is intersected with the 2D array of voxelizations of
that object type (lines 4-10). For example, for the Planes scene
in Fig. 2 left, we precompute two 2D array of voxelizations:
one for the buildings without the planes Vs, and one for the
plane V0; then the intersection between a ray r and the scene is
computed by intersecting r once with Vs and twice with V0, in
the local coordinate systems of each of the two planes.

5.2 Scenes with Deforming Objects

For scenes with many moving objects or with objects that
deform, we use one 2D array of voxelizations for the entire
scene, which is recomputed for every frame. As mentioned
above, Algorithm 1 is too slow for real time performance.

Fig. 3. Voxelization selection for ray intersection. The scene (left) is
rotated with u ¼ 30o (middle), and then f ¼ 42o (right) to find the voxeliza-
tion whose rows are aligned with the ray (blue segment).

Fig. 4. Intersection of ray with the aligned voxelization row that contains it
(see right image in Fig. 3).
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Instead of using single pass voxelization for every ðu;fÞ
direction, we extend single pass voxelization to voxelize
along all directions with a single pass over the scene geome-
try. The scene triangles are rendered with the orthographic
view of the first voxelization V ½0�½0� (i.e., ðu;fÞ = (0, 0)). Each
triangle fragment is processed with Algorithm 6.

Algorithm 5. Intersection of a Ray with a Scene with
Dynamic Rigid Objects

Input: compressed 2D array of voxelizations (V 0
s ;DsÞ of the

static part of the scene, compressed 2D arrays of
voxelizations (V 0

i ; Di) for each type of rigid dynamic object
DOTi, current coordinate system CSj of each dynamic
object instanceDOj, ray r.

Output: boolean that is true iff the ray intersects the scene.
1: if IntersectððV 0

s ; DsÞ; k; rjÞ then
2: return true
3: end if
4: for all dynamic object instancesDOj do
5: rj = Transform(r, CSj)
6: i ¼ DOj:objectType
7: if IntersectððV 0

i ; DiÞ; ki; rjÞ then
8: return true
9: end if
10: end for
11: return false

Algorithm 6. Fragment Shader Algorithm for
Recomputing the Scene’s 2D Array of Voxelizations
for Every Frame

Input: fragment f of scene triangle rendered with orthographic
view of V ½0�½0�, direction discretization increment k

Output: 2D array of scene voxelizations V for the current frame
1: p = Unproject(f)
2: for u from 0 to 180 with k degree increment do
3: for f from 0 to 90 with k degree increment do
4: p0 = Rotate(p; u; f)
5: v = Voxelize(p0)
6: V ½u=k�½f=k�½v� = 1
7: V ½u=k�½ðfþ 90Þ=k�½TransposeðvÞ� = 1
8: end for
9: end for

The 3D point p corresponding to fragment f is computed
by unprojection (line 1). Then p is rotated to each voxelization
local coordinate system (line 4). No trigonometric function is
evaluated since the rotation matrices are precomputed for all
ðu;fÞ pairs and stored in a lookup table. The voxel v contain-
ing the rotated point p0 is set to occupied (line 6). Like inAlgo-
rithm 1, as we compute voxelization V ½u=k�½f=k� we also

compute the transposed voxelization V ½u=k�½ðfþ 90Þ=k�, for
efficiency (line 7). Computing the rotated voxelizations by
rotating the fragments rasterized for the initial voxelization is
significantly faster than computing each voxelization by sin-
gle pass voxelization from the original scene geometry. This
significant performance gain only implies a small quality
reduction cost, as shown in the Results Section. The compres-
sion of the 2D array of voxelizations is too slow to run for
every frame, so the 2D array of voxelizations for scenes with
deforming objects has to be storedwithout compression.

6 RESULTS AND DISCUSSION

We have tested our approach on several scenes: Trees
(626ktris, Fig. 1 left), Garden (416ktris, middle), Cathedral
(456ktris, right), Planes (982ktris, Fig. 2 left), Bear (1,486ktris,
middle), and Park (499ktris, right). All scenes have 1,024
lights, except for Park which has 7,088 lights. For Trees, Gar-
den, and Cathedral, the geometry is static, and for Planes,
Bear, and Park the geometry is dynamic. We also refer the
reader to the video accompanying our paper. All the perfor-
mance figures reported in this paper were measured on a
workstation with a 3.5 GHz Intel(R) Core(TM) i7-4770 CPU,
with 8 GB of RAM, and with an NVIDIA GeForce GTX 1,080
graphics card. We discuss the shadow quality (Section 6.1),
the frame rate (Section 6.2), the memory requirements
(Section 6.3), the extensions (Section 6.4) and the limitations
(Section 6.5) of ourmethod.

6.1 Quality

We measure the quality produced by our rendering tech-
nique using two error metrics. The first one, �v, is defined as
the percentage of light rays at a pixel for which visibility is
evaluated incorrectly. For example, if there are 1,000 lights,
and if at a pixel p 10 lights were incorrectly labeled as visible
from p, and 5 lights were incorrectly labeled as invisible
from p, �v ¼ ð10þ 5Þ=1; 000 ¼ 1:5%. The second one, �s, is
defined as the percentage shadow value error at a pixel. For
the example used above, �s ¼ ð10� 5Þ=1; 000 ¼ 0:5%. �v is a
stricter error measure since for �s errors can cancel each
other out. �s is a better indication of the pixel intensity errors
observed in the final image. The correct visibility and
shadow values at each pixel are computed by ray tracing
(we use NVIDIA’s Optix ray tracer [40]). We also compare
our technique to conventional shadow mapping, and to
Imperfect Shadow Maps (ISM) [5], a state of the art method for
interactive rendering with a large number of lights.

Table 1 shows the average pixel visibility error �v and the
average pixel shadow value error �s for our scenes, for both
our method (with compression) and for ISM. ISM relies on a
point-based representation of the scene, which is then ren-
dered by splatting and pull-push hole-filling to create a low
resolution shadow map for each light. In this comparison
we used approximately 11,000 point samples to render each
128 � 128 ISM, which yields a frame rate comparable to that
of our method. In other words, Table 1 provides an equal-
performance quality comparison between our method
and ISM. An equal-performance comparison between our
method and conventional shadow mapping is not possible.
Rendering a shadowmap for each light is significantly slower
than our method even for low shadow map resolutions that

TABLE 1
Average Pixel Visibility and Pixel Shadow Value Errors for our
Method and for the Prior Art Imperfect Shadow Maps Method

Scene Trees Garden Cathedral Planes Bear Park

�v½%� Ours 4.8 7.8 6.4 3.4 3.3 21.0
ISM 8.5 13.1 20.1 6.5 6.1 27.0

�s½%� Ours 1.8 2.7 3.2 1.7 2.1 7.5
ISM 6.7 5.8 9.8 3.4 4.9 12.1
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generate unacceptably large errors. We do provide an equal-
quality comparison of our method to conventional shadow
mapping in Section 6.2.

As can be seen in Table 1, the approximation errors pro-
duced by our method are consistently small, and they are
consistently smaller than those produced by ISM. Fig. 5
shows the six images from Figs. 1 and 2 rendered with our
method, with ray tracing, and with ISM. The approximation
errors produced by ISM are salient: the tree canopies are too
bright (row 1), the flower bed and column shadows are
missing (row 2), the shadows of the pillars are missing (row
3), the shadow of the low plane is missing (row 4), the bear
shadow is poorly defined and it does not convey the contact
with the ground (row 5), and the train shadow is poorly
defined (row 6). Fig. 6 visualizes the approximation errors

from Table 1, highlighting the smaller errors of our method
compared to ISM.

Table 2 shows the approximation errors of our method as
a function of the number of lights. The errors vary little with
the number of lights, which is expected since the errors are
relative measures, normalized by the number of lights.
For all the experiments described so far, we used a
128� 128� 128 voxelization to approximate ray-scene
intersections, resolution that is sufficient for small errors.
Table 3 shows the approximation errors of our method for
lower voxelization resolutions. The errors are significantly
larger for the lower resolutions, but the 64� 64� 64 could
be used in applications where memory is at a premium.

For all the experiments described so far, we used a
90� 90 2D array of voxelizations, which corresponds to
2 degree rotation angle increments. Table 4 shows the
approximation errors of our method for smaller voxeliza-
tion arrays, i.e., for larger rotation angle increments. Com-
pared to voxelization resolution, shadow quality is less
dependent on voxelization rotation resolution. Using
60� 60 voxelizations, i.e., a rotation angle increment of 3
degrees, produces a quality similar to using 90� 90 voxeli-
zations, while memory usage is reduced by a factor of 2.

6.2 Speed

We have implemented our method using shaders. We com-
pute our 2D array of voxelizations by extending a prior-art

Fig. 5. Comparison between our method (left), ray tracing (middle), and
imperfect shadow maps (right).

TABLE 2
Errors as a Function of the Number of Lights

Lights 512 1,024 2,048 4,096 10,000

Trees
�v½%� 4.6 4.8 4.7 4.6 4.7
�s½%� 1.8 1.8 1.7 1.7 1.7

Garden
�v½%� 7.8 7.8 7.9 7.7 7.8
�s½%� 2.8 2.7 2.9 2.7 2.7

TABLE 3
Errors as a Function of Voxelization Resolution

Voxelization
resolution 323 643 1283 2563

Trees
�v½%� 10.5 6.0 4.8 4.0
�s½%� 7.1 3.1 1.8 1.6

Garden
�v½%� 12.3 8.8 7.8 5.6
�s½%� 6.4 3.5 2.7 2.1

Cathedral
�v½%� 14.4 10 6.4 5.5
�s½%� 6.7 4.5 3.2 3.0

TABLE 4
Errors as a Function of the Voxelization Rotation Resolution

Voxelization
rotation resolution 30� 30 60� 60 90� 90

Trees
�v½%� 6.4 5.3 4.8
�s½%� 2.6 2.1 1.8

Garden
�v½%� 10.6 8.3 7.8
�s½%� 4.1 2.8 2.7
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single-pass voxelization method [28] as shown in
Algorithm 6. The 2D array of voxelizations is stored as a 1D
array of 3D textures. Then, for each frame, the fragment
shader looks up the 2D array of voxelizations for each light to
estimate visibility from the output image sample to the light.

Table 5 shows the frame rendering times for our method
and the speedup versus ray tracing and versus conventional
shadow mapping. For ray tracing we used NVIDIA’s Optix
(version number 3.9.1) with bounding volume hierarchy
(BVH) scene partitioning for acceleration, which yields the
fastest Optix rendering times. The Optix times do not
include BVH construction for the static scenes, i.e., Trees,
Garden, and Cathedral, and they do include it for the
dynamic scenes, i.e., Planes, Bear, and Park.

Our method is substantially faster than ray tracing. The
Planes scene is rendered using Algorithm 5, which implies
two voxelization sets, one for the buildings and one for the
airplane, and three intersection lookups per ray, one for the
buildings and one for each of the two moving instances of
the airplane. In the case of a few rigidly moving objects our
method has the advantage of not having to recompute its
acceleration data structure. The serial off-line precomputa-
tion and compression of the voxelizations takes 492s, 470s,
527s, and 726s for the Trees, Garden, Cathedral, and Planes
scenes by computing each voxelization from scratch as
shown in Algorithm 1. The smallest speedup of 6 is
obtained for the Bear scene where the non-rigidly deform-
ing bear model requires computing the voxelizations on the
fly using Algorithm 6. Computing the voxelizations using
Algorithm 6 takes 277 and 210 ms for the Bear and the Park
scene (without compression), or 89 and 48 percent of the
total frame rendering time.

Compared to conventional shadowmapping, our method
achieves a substantial speedup (e.g., 89� for Cathedral). The

conventional shadowmaps were rendered at the resolutions
given in the last row of Table 5, which achieve a similar pixel
visibility error �v to ourmethod.

We have attempted to perform an equal quality compari-
son to ISM. However, when substantially increasing the
number of geometry sample points used by ISM, the quality
plateaus, and it does not reach the quality generated by our
method, as shown in the graph in Fig. 7. Furthermore, once
the number of samples increases above what can be handled
in a single rendering pass, the additional rendering pass
makes ISM slower than ray tracing. ISM defines samples rel-
ative to scene triangles, therefore the samples do not have to
be recomputed for dynamic scenes, as the updated vertices
of a deforming model implicitly define the updated sample
location. This gives ISM a performance advantage for scenes
with deforming geometry like the Bear, where ISM is five
times faster than our method, which comes however at the
cost of a shadow error �s that is twice as large (i.e., 4.9 for ISM
versus 2.1 for our method). In conclusion, compared to ISM,
ourmethod has the advantage of better quality for equal per-
formance, as shown in Table 1, and also of providing quality
levels that cannot be matched by ISM, whereas ISM has a
speed advantage for non-rigidly deforming scenes.

Fig. 6. Visualization of approximation errors �s for our method (top) and ISM (bottom), for the same frame rate, as reported in Table 1. The images cor-
respond to Figs. 1 and 2. Darker and brighter regions are highlighted with blue and red. The error is scaled by a factor of 10 for illustration purposes.

TABLE 5
Rendering Times of our Method and Speedup versus Ray

Tracing (RT) and versus Conventional Shadow Mapping (SM)

Scene Trees Garden Cathedral Planes Bear Park

Ours[ms] 38 43 59 66 312 441
Speedup versus RT 43� 15� 21� 12� 6� 35�
Speedup versus SM 52� 16� 89� 24� 10� 41�
Res. of SM 384 128 36 96 128 64

Fig. 7. Pixel shadow value errors for ISM as a function of the number of
samples used, and for our method, for comparison. The ISM errors stop
decreasing as the number of samples increases, and they do not reach
the error values of our method.
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Table 6 shows the frame rendering times for our method
as a function of the number of lights. As expected, for static
scenes (i.e., Trees, Garden, and Cathedral) and for the scene
with rigidly moving objects (i.e., Planes), the frame times
double as the number of lights doubles, since almost all of
the frame time goes to looking up light ray-voxelization
intersections. For the Bear the voxelization computation
time dominates, so supporting a larger number of lights
comes at a relatively smaller additional cost.

Our method achieves performance by avoiding marching
diagonally through the voxelization when computing the
ray intersection. We have compared our performance to
marching diagonally one voxel at the time, and the speedup
brought by our method is substantial, see Table 7. We have
also implemented a method that partitions the ray into sub-
segments based on the rows of the voxelization it traverses,
and that steps one ray subsegment at the time. Stepping one
subsegment at the time is made possible by storing in
each voxel the distance to the next occupied voxel on the
same row. Even compared to this fast diagonal marching
approach, our speedups are 22� and 31� for the Trees and
Garden scenes.

6.3 Compression

Compressing the array of voxelizations reduces memory
footprint at the cost of a small shadow quality loss, of pre-
processing computation, and of a small frame rate decrease.

6.3.1 Memory Reduction

Table 8 shows the memory reduction by compression. The
overhead of compression is prohibitive for the 32� 32� 32
resolution, but compression reduces memory consumption
by a factor of 6� to a manageable 333 MB for the
128� 128� 128 resolution.

6.3.2 Quality Loss

Table 9 shows the shadow approximation errors introduced
by our lossy voxelization compression scheme for the
frames shown in Fig. 5. Whereas the visibility errors go up,
the quality loss in terms of shadow intensity is small, which
indicates that the visibility errors introduced by compres-
sion are random and that they cancel out.

6.3.3 Performance

For static scenes, the array of voxelizations is pre-computed
off-line. For dynamic scenes with deforming objects, the
voxelizations are recomputed for every frame. Row 1 in
Table 10 gives the times for computing the arrays of voxeli-
zations on GPU (using Algorithm 1). Except for dynamic
scenes with deforming objects, when the voxelizations
are used as is, the voxelizations are compressed using
Algorithm 2. Row 2 in Table 10 gives the times for com-
pressing the arrays of voxelizations on a single CPU.

Using a compressed array of voxelizations to compute
shadows adds a decoding step to the intersection lookup.
Table 11 shows that the performance loss due to this addi-
tional step is small.

6.4 Extensions

We have extended our approach to handle colored light
sources. In Fig. 8 the TV is modeled with 1,024 colored point
light sources. The voxelization resolution is 128� 128� 128.
The compressed memory footprint is 333 MB. The scene is
rendered at 16 Hz. We have also extended our method to
support indirect illumination, where virtual point light
sources are placed on scene surfaces to compute second
order light rays. Fig. 9 shows a Cornell box rendered with
our approach with 1,024 real and virtual point light sources
at 20 fps (128� 128� 128 voxelization resolution, 333 MB
memory footprint).

TABLE 6
Rendering Times [ms] as a Function of the Number of Lights

Lights 512 1,024 2,048 4,096 10,000

Trees 20 38 77 159 378
Garden 21 43 89 183 459
Cathedral 29 59 124 273 683
Planes 35 66 135 266 647
Bear 297 312 345 417 630

TABLE 7
Rendering Time of our Method and Speedup

versus Diagonal Tracing

Scene Trees Garden Cathedral Planes Bear Park

Ours [ms] 38 43 59 66 312 441
Diagonal tracing [ms] 2858 3401 2673 2825 3806 22482
Speedup 75� 79� 45� 43� 12� 51�

TABLE 8
Memory Reduction by Compression

Voxelization resolution 323 643 1283 2563

Uncompressed[MB] 32 254 2025 16200
compressed[MB] 36 95 333 1298

TABLE 9
Quality Loss Due to Voxelization Compression

Scenes. Trees Garden Cathedral Planes

Without compression �v½%� 4.5 7.6 6.4 3.3
�s½%� 1.7 2.7 3.2 1.6

With compression �v½%� 4.8 7.8 6.4 3.4
�s½%� 1.8 2.7 3.2 1.7

TABLE 10
Pre-Computation Time

Scenes. Trees Garden Cathedral

Voxelization [s] 0.2 0.19 0.19
Compression [s] 492 470 527

TABLE 11
Frame Rate Loss Due to Compression

Scenes. Trees Garden Cathedral

Without compression 28fps 25fps 20fps
With compression 26fps 23fps 17fps
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6.5 Limitations

Our method reduces the complexity of the per-ray compu-
tation at the cost of storage, resorting on several approxi-
mations. First, the scene geometry is approximated by
voxelization. Second, the light ray direction is discretized
based on angle increments. Third, the array of voxeliza-
tions are compressed using a lossy vector quantization
scheme. These approximation errors are easily controlled

and our method will be able to leverage any advances in
GPU storage and computing capability.

Like with any ray tracing acceleration scheme, our
method handles dynamic scenes with the additional cost of
updating the acceleration data structure for every frame.
Unlike hierarchical data structures that do not map well to
the GPU, our voxelization is computed with GPU-friendly
depth peeling. For scenes where the number of dynamic
objects is small, and the dynamic objects are rigid, it is feasi-
ble to pre-compute a 2D array of voxelizations for each
object and to transform the ray to the local coordinate sys-
tem of the moving object. The spatial resolution of the per-
object voxelizations can be smaller than for those used for
the entire scene, e.g., we have used 32 � 32 � 32 voxeliza-
tions for the airplanes.

We have demonstrated our technique with voxelization
resolution of up to 256 � 256 � 256. This resolution might
not be sufficient for large scenes with complex geometry,
where discretization “banding” like artifacts might remain.
Future work will investigate extending cascaded shadow
map approaches [41] to our method, by computing a 2D
array of voxelizations for the part of the scene located in the
near light frustum.

Shadow intensity errors are small because occasional vis-
ibility errors cancel out. Like for many methods for render-
ing soft shadows, the approximation error of our method
increases with the hardness of the shadows. This limitation
could be addressed in future work by detecting the occur-
rence of hard shadows and by building conventional
shadow maps for the lights that cast them.

Our method requires substantial amount of storage to
anticipate all possible rays that have to be intersected with
the scene. Good shadows are obtained for a 90 � 90 discreti-
zation of ray directions and a 128� 128� 128 scene geometry
discretization, which, with vector quantization compression
totals a practical 333 MB. Today’s GPUs also support 256 �
256 � 256 voxelizations, and the accuracy of the ray-scene
intersection approximationwill go up as the storage capacity
of GPUs continues to improve.

We did not investigate parallelizing the compression of
the array of voxelizations since compression is performed

Fig. 8. Scene with TV modeled with 1,024 light sources, rendered with
our method at 16 fps.

Fig. 9. Cornell box with lighting modeled with with 1,024 real and virtual
point light sources, rendered with our method at 20 fps.
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off-line. FromAlgorithm 2, one can see that the running time
of compression is dominated by the search for the simplified
row r0 in the simplified dictionary D0 (line 8). This yields an
asymptotic running time of Nlog2n, where N is the total
number of rows, and n is the number of dictionary entries. If
pre-processing time is important, futurework could examine
parallelizing compression by compressing each row in paral-
lel. Rows are independent and processing them in parallel
does not result in concurrent writes, which promises good
speedup scalability with the number of processors.

7 CONCLUSIONS AND FUTURE WORK

We have presented a method for interactive rendering with
thousands of dynamic lights based on an approximation of
the intersection between a ray and the scene geometry. Our
method has a significant frame rate advantage over ray trac-
ing, while quality remains acceptable. Compared to imper-
fect shadow maps, our method produces more accurate
results for the same frame rate. Ourmethod computes visibil-
ity for each one of the many lights, and it does not cluster the
lights. As the lights move from one clustered distribution to
another, our method produces smoothly changing shadows,
avoiding the temporal artifacts caused by sudden changes in
light cluster topology. Visibility is not computed by interpola-
tion, as visibility is notoriously discontinuous, but rather by
intersecting individual light rays with the scene.

Our method handles scenes of medium complexity very
quickly and it could be extended to high complexity scenes
when used in conjunction with prior art methods. For exam-
ple, our method is compatible with prior work that relies on
hierarchical scene subdivisions. For example, one could use
an octree where a leaf is modeled with one of our 2D array of
voxelizations. Such a hybrid approach will not guarantee a
fixed, small number of texture look-ups per ray-scene inter-
sections, but the powerful leafs will reduce the depth of the
hierarchical subdivision, andwill aid with balancing it.

Ray-geometry intersection is a primitive operation in
computer graphics and our acceleration scheme could bene-
fit a number of rendering techniques, including ambient
occlusion, soft shadows, and specular and diffuse reflec-
tions. We make the distinction between the question of
whether a ray intersects a scene’s geometry, and the question
of where the ray-scene intersection occurs. Some applica-
tions, including the lighting context explored by this paper,
only need to answer the first question, whereas other appli-
cations, such as for example specular reflections, also need
to answer the second question. The first question is
answered by simply testing whether the voxelization row
truncated to the extent of the ray is non-zero. The second
question requires locating the first non-zero bit in the trun-
cated row, which can be done with a binary search in logw
steps, where w is the voxelization row resolution (e.g., 7
steps for our 128bit voxelization rows). Once the location of
the intersection is found, the location can be mapped to a
main, unrotated voxelization that stores all ingredients for
shading, i.e., color for first order reflections, or normal for
the spawning of the second order reflected ray.

Our method relies on a scene geometry approximation
that not only reduces the complexity of the scene geometry,
but that also anticipates all possible directions of the rays
with which the scene has to be intersected. The scene

geometry approximation scheme is simple and uniform, so
its construction, storage, and use map well to the GPU. The
scheme reduces the cost of intersecting a ray with a scene to
the smallest possible value. With a four channel, 32bit per
channel lookup, the intersection with a 128� 128� 128
voxelization is essentially obtained with two lookups, one
to lookup the row index in the dictionary, and one to lookup
the ray. The ray-scene intersection is accelerated by
“throwing memory at the problem”. Our method is already
practical in the context of today’s GPUs, and it has the
potential to become the standard approach for estimating
scene-ray intersections in interactive graphics applications,
much the same way trivial z-buffering has supplanted com-
plex polygon sorting visibility algorithms.

Our method moves towards making complex dynamic
lighting practical in the context of interactive graphics
applications. As the number of supported dynamic lights
increases, so does the challenge of lighting design and ani-
mation. An important direction of future work will have to
devise algorithmic approaches for assisting digital content
creators with the complex task of defining, calibrating, and
animating tens of thousands of lights.
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